

FINISAR[°]

Trends in 400G Optics

Christian Urricariet

IX Forum 12 Sao Paulo, December 2018

Optics industry leader with ~\$1.3B annual revenue

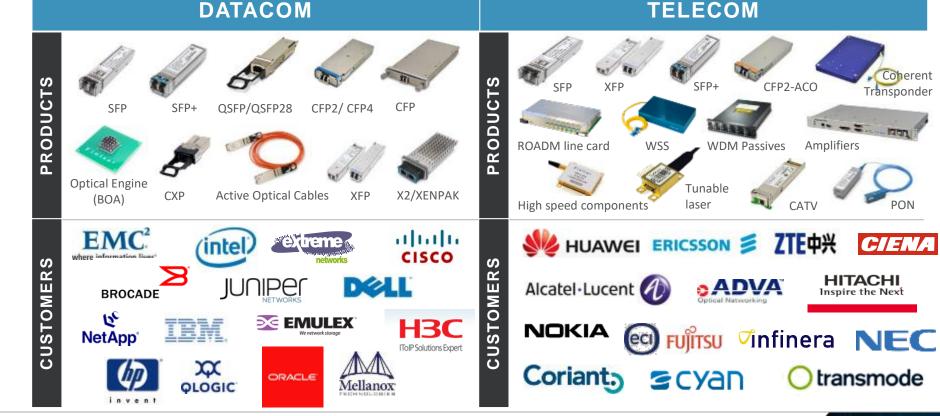
Broadest and most advanced product portfolio

Vertically integrated with low cost manufacturing

Experienced management team

~12,500 employees

1300+ issued U.S. patents



Finisar Facilities Worldwide

World's Leading Supplier of Optical Communication Components and Subsystems

Broad Product Portfolio and Customer Base

FINISAR[°]

© Finisar Corporation

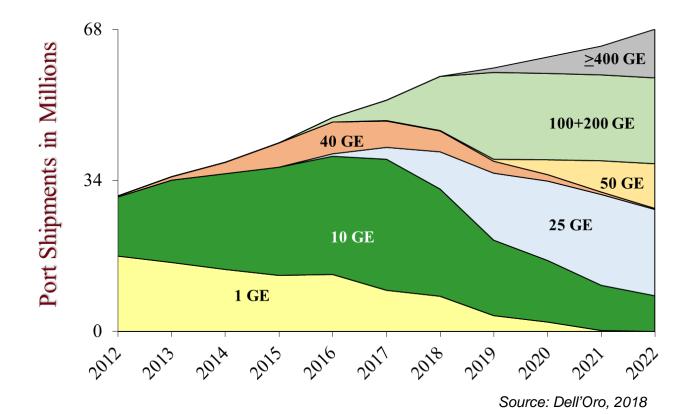
Data Center Connections are High Volume Drivers

 Due to the ongoing large increases in bandwidth demand, Data Center connections are expected to move from 25G/100G to 100G/400G

10G/25G Intra-rack

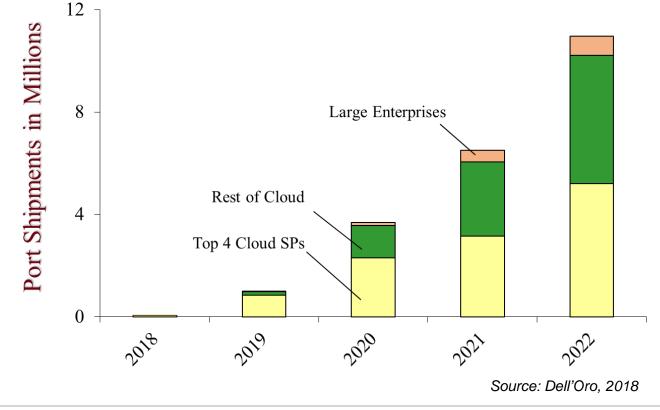
40G/100G Inter-rack

100G/200G Long span/Inter-buildings


Building 1

- Within the Data Center Racks
 - 10GE still being deployed
 - 25GE starting to be deployed in volume
 - **100GE** (or 50G) will follow
- Between Data Center Racks
 - 40GE still being deployed
 - 100GE starting to be deployed in volume
 - 400GE will follow at large Cloud Service Providers
- Long Spans/DCI & WAN
 - 10G DWDM/Tunable still being deployed
 - 100G/200G Coherent starting to be deployed
 - **400G** will follow Then 600G or 800G

Building 2 /


WAN

Forecasted Data Center Ethernet Port Shipments

FINISAR © Finisar Corporation

Forecasted 400GE Shipments by Market Segment

Mainstream 1RU Ethernet Switch Roadmap

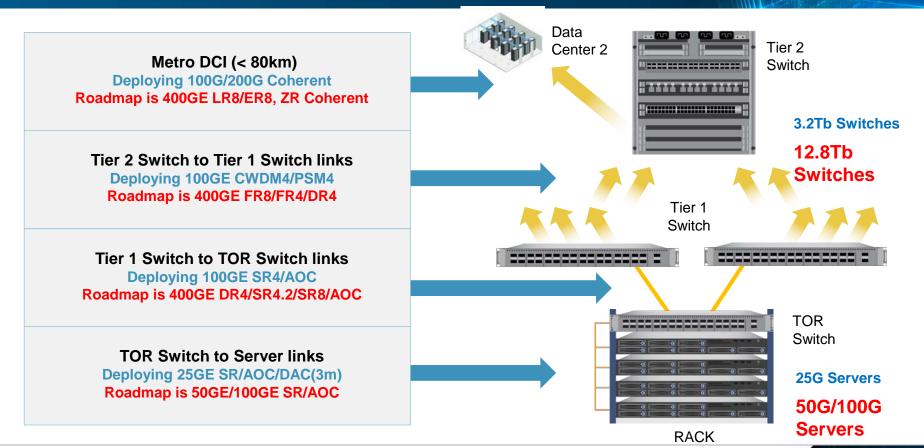
First Deployed	Electrical I/O [Gb/lane]	Switching Bandwidth	TOR/Leaf Data Center Switch Configuration	
~2010	10G	1.28T	32xQSFP+ (40G)	
~2015	25G	3.2T	32xQSFP28 (100G)	3.2Tb/s switches based on 100G QSFP28 modules being deployed in cloud data centers today.
~2019	50G	6.4T	2 ports of 200G	Given the multiple switching ICs expected to be available, the
~2020	50G	12.8T	32 ports of 400G	market is likely to be fragmented in the future.

Large growth in bandwidth demand is pushing the industry to work on technologies and standards to support future 12.8T switches.

FINISAR

400G and Next-Gen 100G Ethernet Optical Standardization

Interface	Link Distance	Media type		Optical Technology			
400GBASE-SR16	100 m (OM4)	32f Parallel MMF	•		not expected e deployed		
400GBASE-DR4	500 m	8f Parallel SMF	•	4x100G PAM4 Parallel SiP	to be deployed	– 400GE interfaces	
400GBASE-FR8	2 km	2f Duplex SMF	•	8x50G PAM4 LAN-WDM DML		standardized in IEEE 802.3bs	
400GBASE-LR8	10 km	2f Duplex SMF	•	8x50G PAM4 LAN-WDM DML		002.005	
Interface	Link Distance	Media type		Optical Technology	-		
100GBASE-SR2	100 m (OM4)	4f Parallel MMF	•	2x50G PAM4 850nm VCSEL		Next-Gen 100GE standardized in IEEE 802.3cd	
100GBASE-DR	500 m	2f Duplex SMF	•	100G PAM4 1310nm EML			
Interface	Link Distance	Media type		Optical Technology	-		
400GBASE-SR8	100 m (OM4)	16f Parallel MMF	•	8x50G PAM4 850nm VCSEL		Multimode 400GE	
400GBASE-SR4.2	100 m (OM4)	8f Parallel MMF		8x50G PAM4 BiDi (850 / 910nm) VCSEL		objectives in IEEE	
Interface	Link Distance	Media type		Optical Technology		P802.3cm	
400G-FR4	2 km	2f Duplex SMF	•	4x100G PAM4 CWDM EML		100GLambda	
100G-FR	2 km	2f Duplex SMF	•	100G PAM4 1310nm EML		MULTI-SOURCE AGREEMENT	
100G LR	10 km?	2f Duplex SMF	•	100G PAM4 1310nm EML			
Silicon Ph	notonics to be	e used <100m used <1km o be used <40km	SWDM to enable 400GE over Duplex MMF in the future				


N.CO.

PAM4

FINISAR

© Finisar Corporation

400G Ethernet Is Taking Shape in the Cloud Data Center

400GE Optical Transceiver Form Factors

QSFP-DD :: OSFP

CFP8 is the *1st-generation 400GE* module form factor, to be used in core routers and DWDM transport client interfaces.

Module dimensions are slightly smaller than CFP2

Supports either CDAUI-16 (16x25G NRZ) or CDAUI-8 (8x50G PAM4) electrical I/O

QSFP-DD and OSFP modules being developed as 2nd-generation 400GE, for **high port-density data center switches**.

Enable **12.8Tb/s** in 1RU via 32 x 400GE ports Support **CDAUI-8** (8x50G PAM4) electrical I/O only QSFP-DD host is backwards compatible with QSFP28

11

400G, 200G & 100G PAM4 Transceiver Demos at OFC/ECOC 2018

400G QSFP-DD LR8/FR8 (10km)

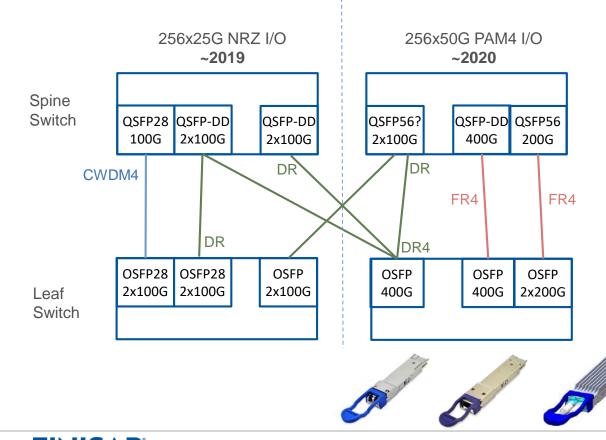
400G QSFP-DD AOC (70m)

200G QSFP56 FR4 (2km) 200G QSFP56 eFR4 (10km) 400G QSFP-DD eLR8 (30km) 400G QSFP-DD DR4 (500m)

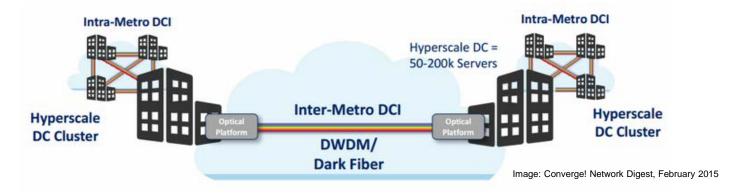
100G QSFP28 DR/FR (2km)

Additionally, several interoperability demos were done by the MSAs

Is Pluggability Still a Requirement for Optics?



- Some optics are not pluggable; they are mounted directly on the system host PCB.
 - BOAs have been used for several years on core routers (inter-chassis) and supercomputers.
 - Very short host PCB traces enable low power dissipation and high port density.
- Higher bandwidth density can be achieved by:
 - More channels, e.g., up to 16 Tx and 16 Rx channels in a module.
 - Higher data rate per channel: 10G/ch and 25G/ch variants deployed today, 50G/ch in the future.
- The Ethernet industry view however is that **pluggable optics** will be preferred for 400GE.
 - Facilitates maintenance and pay-as-you-grow model.



Several New Interface Types and Form Factors to be Deployed

- Enabled by high I/O count and by 400G-DR4 to 100G-DR breakout interoperability, highdensity 100G implementations will thrive in Leaf-Spine topologies.
- Large I/O Line Cards will have QSFP-DD or OSFP sockets.
 OSFP slots may use QSFP adapters.

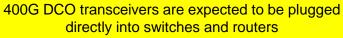
80 km DCI Space: Coherent vs. Direct Detection

- Coherent systems are likely to capture the 80km market at 400Gb/s and higher rates.
- For 40km and shorter reaches, direct detection may be lower power and cost than coherent for the next few years. Example: 8x50Gb/s (PAM4) ER8 and eLR8 modules.
- Currently coherent technology is about 2x higher power and cost relative to 100Gb/lane direct detection.
- Standardization work by OIF 400ZR IA and IEEE P802.3cn Task Force.
- Aggressive innovation will be required to maintain long-term trends to support 1.6 Tb/s ~2024.

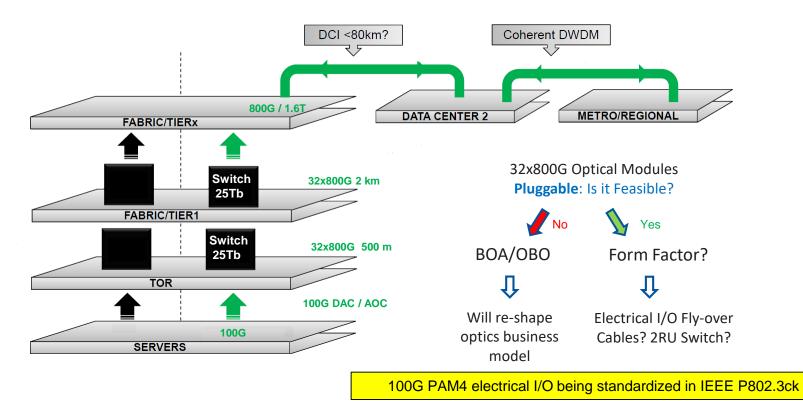
FINISAR

Coherent Transmission for DCI Applications

- 100G/200G links require a transponder box to convert to coherent optical transmission in order to support 80~100km and beyond.
- Several system OEMs provide a 1RU transponder box for DCI applications, most of which use pluggable Coherent CFP2-ACO optical transceivers.



 Expected coherent transceiver evolution is driven by improvements in optical packaging and DSP power dissipation:


200G CFP2-ACO → 400G CFP2-DCO → 400G QSFP-DD DCO

FINISAR

© Finisar Corporation

Coming Next: What Shape Will 800G Ethernet Take?

FINISAR

Thank You

Christian Urricariet

christian.urricariet@finisar.com

